Main menu

Generating single-sex litters: development of CRISPR-Cas9 genetic tools to produce all-male offspring


Animals are extremely useful genetic tools in science and global resources in agriculture. However, a single sex is often required in surplus, and current genetic methods for producing all-female or all-male litters are inefficient. Using the mouse as a model, we developed a synthetic, two-part bicomponent strategy for generating all-male litters. We achieved this using CRISPR-Cas9 genome editing technology to generate large stable knock-ins on the autosomes and X chromosome.

The bicomponent system functions via the sex-specific co-inheritance of a Cas9 transgene and an sgRNA transgene targeting the essential Topoisomerase 1 gene. This technology proved to be highly efficient in generating on-target mutations, resulting in embryonic lethality of the target sex. Our study is the first to successfully generate all-male mammalian litters using a CRISPR-Cas9 bicomponent system and provides great strides towards generating single-sex litters for laboratory or agricultural research.

Authors: Charlotte Douglas, Valdone Maciulyte, Jasmin Zohren, Daniel M. Snell, Obah A. Ojarikre, Peter J.I. Ellis, James M.A. Turner

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

お問い合わせ

Intellectual property Cookie policy Corporate reporting Privacy policy Terms & conditions Accessibility

Oxford Nanoporeについて

Contact us 経営陣 メディアリソース & お問い合わせ先 投資家向け Oxford Nanopore社で働く BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag