Main menu

Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data


DNA base modifications, such as C5-methylcytosine (5mC) and N6-methyldeoxyadenosine (6mA), are important types of epigenetic regulations. Short-read bisulfite sequencing and long-read PacBio sequencing have inherent limitations to detect DNA modifications. Here, using raw electric signals of Oxford Nanopore long-read sequencing data, we design DeepMod, a bidirectional recurrent neural network (RNN) with long short-term memory (LSTM) to detect DNA modifications. We sequence a human genome HX1 and a Chlamydomonas reinhardtii genome using Nanopore sequencing, and then evaluate DeepMod on three types of genomes (Escherichia coli, Chlamydomonas reinhardtii and human genomes). For 5mC detection, DeepMod achieves average precision up to 0.99 for both synthetically introduced and naturally occurring modifications. For 6mA detection, DeepMod achieves ~0.9 average precision on Escherichia coli data, and have improved performance than existing methods on Chlamydomonas reinhardtii data. In conclusion, DeepMod performs well for genome-scale detection of DNA modifications and will facilitate epigenetic analysis on diverse species.

Authors: Qian Liu, Li Fang, Guoliang Yu, Depeng Wang, Chuan-Le Xiao, Kai Wang

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

ナノポア技術

ナノポアの最新ニュースを購読 リソースと発表文献 Nanopore Communityとは

Oxford Nanoporeについて

ニュース 会社沿革 持続可能性 経営陣 メディアリソース & お問い合わせ先 投資家向け パートナー向け Oxford Nanopore社で働く 現在の募集状況 営業上の情報 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag