Main menu

Soil disturbance affects plant growth via soil microbial community shifts


Recent advances in climate research have discovered that permafrost is particularly vulnerable to the changes occurring in the atmosphere and climate, especially in Alaska where 85% of the land is underlain by mostly discontinuous permafrost. As permafrost thaws, research has shown that natural and anthropogenic soil disturbance causes microbial communities to undergo shifts in membership composition and biomass, as well as in functional diversity.

Boreal forests are home to many plants that are integral to the subsistence diets of many Alaska Native communities. Yet, it is unclear how the observed shifts in soil microbes can affect above ground plant communities that are relied on as a major source of food. In this study, we tested the hypothesis that microbial communities associated with permafrost thaw affect plant growth by growing five plant species found in Boreal forests and Tundra ecosystems, including low-bush cranberry and bog blueberry, with microbial communities from the active layer soils of a permafrost thaw gradient.

We found that plant growth was significantly affected by the microbial soil inoculants. Plants inoculated with communities from above thawing permafrost showed decreased growth compared to plants inoculated with microbes from undisturbed soils. We used metagenomic sequencing to determine that microbial communities from disturbed soils above thawing permafrost have differences in taxonomy from microbial communities in undisturbed soils above intact permafrost.

The combination of these results indicates that a decrease in plant growth can be linked to soil disturbance driven changes in microbial community membership and abundance. These data contribute to an understanding of how microbial communities can be affected by soil disturbance and climate change, and how those community shifts can further influence plant growth in Boreal forests and more broadly, ecosystem health.

Authors: Taylor J. Seitz, Ursel M. E. Schütte, Devin M. Drown

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

联系我们

Intellectual property Cookie policy Corporate reporting Privacy policy Terms & conditions Accessibility

关于 Oxford Nanopore

Contact us 领导团队 媒体资源和联系方式 投资者 在 Oxford Nanopore 工作 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag