Main menu

Rapid characterization of complex genomic regions using Cas9 enrichment and Nanopore sequencing


Long-read sequencing approaches have considerably improved the quality and contiguity of genome assemblies. Such platforms bear the potential to resolve even extremely complex regions, such as multigenic families and repetitive stretches of DNA. Deep sequencing coverage, however, is required to overcome low nucleotide accuracy, especially in regions with high homopolymer density, copy number variation, and sequence similarity, such as the MHC and KIR gene clusters of the immune system.

Therefore, we have adapted a targeted enrichment protocol in combination with long-read sequencing to efficiently annotate complex genomic regions. Using Cas9 endonuclease activity, segments of the complex KIR gene cluster were enriched and sequenced on an Oxford Nanopore Technologies platform. This provided sufficient coverage to accurately resolve and phase highly complex KIR haplotypes. Our strategy facilitates rapid characterization of large and complex multigenic regions, including its epigenetic footprint, in multiple species, even in the absence of a reference genome.

Authors: Jesse Bruijnesteijn, Marit van der Wiel, Natasja G de Groot, Ronald E Bontrop

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag