Main menu

pycoQC, interactive quality control for Oxford Nanopore Sequencing


pycoQC is a new tool to generate interactive quality control metrics and plots from basecalled nanopore reads or summary files generated by Albacore and Guppy. Although there are other open-source alternatives such as Nanoplot, MinionQC and toulligQC, pycoQC has several novel features:

  • Integration with the plotly Python charting library to create dynamic D3.js visualizations
  • Extensive Python API developed for interactive data exploration in Jupyter Notebooks
  • Simple command line interface to generate customisable interactive HTML reports
  • Multiprocessing FAST5 feature extraction program to generate a summary file directly from FAST5 files
  • Support for data generated by ONT MinION, GridION and PromethION devices, basecalled by Albacore 1.3+, Guppy 2.1.3+ or MinKNOW 18.12+

pycoQC is available at https://github.com/a-slide/pycoQC together with extensive documentation and some example Jupyter notebooks. The source code has been archived on Zenodo with the linked DOI: 10.5281/zenodo.1116396.

Authors: Adrien Leger, Tommaso Leonardi

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag