Main menu

Precise characterization of somatic structural variations and mobile element insertions from paired long-read sequencing data with nanomonsv


We introduce our novel software, nanomonsv, for detecting somatic structural variations (SVs) using tumor and matched control long-read sequencing data with a single-base resolution. Using paired long-read sequencing data from three cancer cell-lines and their matched lymphoblastoid lines, we demonstrate that our approach can identify not only somatic SVs that can be captured with short-read technologies but also novel ones especially those whose breakpoints are located in repeat regions.

In addition, we have developed a workflow for classifying mobile element insertions while elucidating their in-depth properties such as 5′ truncations, internal inversion as well as source sites in the case of LINE1 transductions.

Finally, we identify complex SVs probably caused by replication mechanisms or telomere crisis by examining the co-occurrence of multiple somatic SVs in common supporting reads. In summary, our approaches applied to cancer long-read sequencing data can reveal various features of somatic SVs and will lead to further understanding of mutational processes and functional consequences of somatic SVs.

Authors: Yuichi Shiraishi, Junji Koya, Kenichi Chiba, Yuki Saito, Ai Okada, Keisuke Kataoka

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag