Main menu

nPhase: An accurate and contiguous phasing method for polyploids


While genome sequencing and assembly are now routine, we still do not have a full and precise picture of polyploid genomes. Phasing these genomes, i.e. deducing haplotypes from genomic data, remains a challenge. Despite numerous attempts, no existing polyploid phasing method provides accurate and contiguous haplotype predictions. To address this need, we developed nPhase, a ploidy agnostic pipeline and algorithm that leverage the accuracy of short reads and the length of long reads to solve reference alignment-based phasing for samples of unspecified ploidy (https://github.com/nPhasePipeline/nPhase). nPhase was validated on virtually constructed polyploid genomes of the model species Saccharomyces cerevisiae, generated by combining sequencing data of homozygous isolates. nPhase obtained on average >95% accuracy and a contiguous 1.25 haplotigs per haplotype to cover >90% of each chromosome (heterozygosity rate ≥0.5%). This new phasing method opens the door to explore polyploid genomes through applications such as population genomics and hybrid studies.

Authors: Omar Abou Saada, Andreas Tsouris, Anne Friedrich, Joseph Schacherer

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

联系我们

Intellectual property Cookie policy Corporate reporting Privacy policy Terms & conditions Accessibility

关于 Oxford Nanopore

Contact us 领导团队 媒体资源和联系方式 投资者 在 Oxford Nanopore 工作 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag