Main menu

nPhase: An accurate and contiguous phasing method for polyploids

  • Published on: July 24 2020
  • Source: bioRxiv

While genome sequencing and assembly are now routine, we still do not have a full and precise picture of polyploid genomes. Phasing these genomes, i.e. deducing haplotypes from genomic data, remains a challenge. Despite numerous attempts, no existing polyploid phasing method provides accurate and contiguous haplotype predictions. To address this need, we developed nPhase, a ploidy agnostic pipeline and algorithm that leverage the accuracy of short reads and the length of long reads to solve reference alignment-based phasing for samples of unspecified ploidy (https://github.com/nPhasePipeline/nPhase). nPhase was validated on virtually constructed polyploid genomes of the model species Saccharomyces cerevisiae, generated by combining sequencing data of homozygous isolates. nPhase obtained on average >95% accuracy and a contiguous 1.25 haplotigs per haplotype to cover >90% of each chromosome (heterozygosity rate ≥0.5%). This new phasing method opens the door to explore polyploid genomes through applications such as population genomics and hybrid studies.

Authors: Omar Abou Saada, Andreas Tsouris, Anne Friedrich, Joseph Schacherer

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

联系我们

知识产权 Cookie 政策 企业报告 隐私政策 条件条款 前瞻性陈述

关于 Oxford Nanopore

联系我们 领导团队 媒体资源和联系方式 投资者 在 Oxford Nanopore 工作 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag