Main menu

NERD-seq: A novel approach of Nanopore direct RNA sequencing that expands representation of non-coding RNAs


The new next-generation sequencing platforms by Oxford Nanopore Technologies for direct RNA sequencing (direct RNA-seq) allow for an in-depth and comprehensive study of the epitranscriptome by enabling direct base calling of RNA modifications. Non-coding RNAs constitute the most frequently documented targets for RNA modifications. However, the current standard direct RNA-seq approach is unable to detect many of these RNAs.

Here we present NERD-seq, a sequencing approach which enables the detection of multiple classes of non-coding RNAs excluded by the current standard approach. Using total RNA from a tissue with high known transcriptional and non-coding RNA activity in mouse, the brain hippocampus, we show that, in addition to detecting polyadenylated coding and non-coding transcripts as the standard approach does, NERD-seq is able to significantly expand the representation for other classes of RNAs such as snoRNAs, snRNAs, scRNAs, srpRNAs, tRNAs, rRFs and non-coding RNAs originating from LINE L1 elements. Thus, NERD-seq presents a new comprehensive direct RNA-seq approach for the study of epitranscriptomes in brain tissues and beyond.

Authors: Luke Saville, Yubo Cheng, Babita Gollen, Liam Mitchell, Matthew Stuart-Edwards, Travis Haight, Majid Mohajerani, Athanasios Zovoilis

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag