Main menu

Nanopore sequencing of full-length circRNAs in human and mouse brains reveals circRNA-specific exon usage and intron retention


Circular RNA (circRNA) is a poorly understood class of non-coding RNAs, some of which have been shown to be functionally important for cell proliferation and development. CircRNAs mainly derive from back splicing events of coding mRNAs, making it difficult to distinguish the internal exon composition of circRNA from the linearly spliced mRNA. To examine the global exon composition of circRNAs, we performed long-read sequencing of single molecules using nanopore technology for human and mouse brain-derived RNA. By applying an optimized circRNA enrichment protocol prior to sequencing, we were able to detect 7,834 and 10,975 circRNAs in human and mouse brain, respectively, of which 2,945 and 7,052 are not currently found in circBase. Alternative splicing was more prevalent in circRNAs than in linear spliced transcripts, and notably >200 not previously annotated exons were used in circRNAs. This suggests that properties associated with circRNA- specific features, e.g. the unusual back-splicing step during biogenesis, increased stability and/or their lack of translation, alter the general exon usage at steady state. We conclude that nanopore sequencing technology provides a fast and reliable method to map the specific exon composition of circRNA.

Authors: Karim Rahimi, Morten T. Venø, Daniel M. Dupont, Jørgen Kjems

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag