Main menu

MINTyper: an outbreak-detection method for accurate and rapid SNP typing of clonal clusters with noisy long reads

  • Published on: April 21 2021
  • Source: Biology Methods and Protocols

For detection of clonal outbreaks in clinical settings, we present a complete pipeline that generates a single-nucleotide polymorphisms-distance matrix from a set of sequencing reads. Importantly, the program is able to handle a separate mix of both short reads from the Illumina sequencing platforms and long reads from Oxford Nanopore Technologies’ (ONT) platforms as input. MINTyper performs automated reference identification, alignment, alignment trimming, optional methylation masking, and pairwise distance calculations. With this approach, we could rapidly and accurately cluster a set of DNA sequenced isolates, with a known epidemiological relationship to confirm the clustering.

Functions were built to allow for both high-accuracy methylation-aware base-called MinION reads (hac_m Q10) and fast generated lower-quality reads (fast Q8) to be used, also in combination with Illumina data. With fast Q8 reads a higher number of base pairs were excluded from the calculated distance matrix, compared with the high-accuracy methylation-aware Q10 base-calling of ONT data. Nonetheless, when using different qualities of ONT data with corresponding input parameters, the clustering of isolates were nearly identical.

Authors: Malte B Hallgren, Søren Overballe-Petersen, Ole Lund, Henrik Hasman, Philip T L C Clausen

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

联系我们

知识产权 Cookie 政策 企业报告 隐私政策 条件条款 前瞻性陈述

关于 Oxford Nanopore

联系我们 领导团队 媒体资源和联系方式 投资者 在 Oxford Nanopore 工作 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag