Main menu

Marcus Stoiber: Detecting methylation and more from raw nanopore signal


Marcus Stoiber gallantly stepped into the breach to discuss the latest developments in modified base calling. He opened his presentation by describing Tombo and a series of improvements that have recently been implemented. The Tombo analysis platform utilises raw signal analysis and basecalled reads to allow detection of epigenetic modifications from raw nanopore sequencing data. Three different ways of detecting modified bases are available, providing users with flexibility with regard to application and experimental design.

Marcus explained that recent work on the generation of a number of motif-specific models (in human and E. coli) has dramatically improved the power of the approach and delivers more accurate calls. He also highlighted the availability of online tutorials that allow researchers to train the tool to detect base modifications in their organism of interest – providing it has a specific sequence motif/pattern. A further improvement to the tool is the introduction of ‘level sample comparison’ which allows improved modification detection in specific contexts, such as highly modified direct RNA.

In the next section of his talk, Marcus touched on the ‘flip-flop’ algorithm that Clive Brown revealed in his plenary presentation on day 1 of the meeting. The flip-flop algorithm simplifies base calling by outputting single bases as opposed to more complex k-mer labels. This provides a better architecture for calling base modifications, allowing the output to scale gently with the addition of different bases. Training the model is much easier and requires less data. He also provided data showing how flip-flow successfully called 5hmC with no loss in accuracy to the underling base.

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag