Main menu

HASLR: Fast Hybrid Assembly of Long Reads


Third generation sequencing technologies from platforms such as Oxford Nanopore Technologies and Pacific Biosciences have paved the way for building more contiguous assemblies and complete reconstruction of genomes. The larger effective length of the reads generated with these technologies has provided a mean to overcome the challenges of short to mid-range repeats. Currently, accurate long read assemblers are computationally expensive while faster methods are not as accurate. Therefore, there is still an unmet need for tools that are both fast and accurate for reconstructing small and large genomes. Despite the recent advances in third generation sequencing, researchers tend to generate second generation reads for many of the analysis tasks.

Here, we present HASLR, a hybrid assembler which uses both second and third generation sequencing reads to efficiently generate accurate genome assemblies.

Our experiments show that HASLR is not only the fastest assembler but also the one with the lowest number of misassemblies on all the samples compared to other tested assemblers. Furthermore, the generated assemblies in terms of contiguity and accuracy are on par with the other tools on most of the samples.

Availability: HASLR is an open source tool available at https://github.com/vpc-ccg/haslr.

Authors: Ehsan Haghshenas, Hossein Asghari, Jens Stoye, Cedric Chauve, Faraz Hach

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag