Main menu

Haplotype threading: accurate polyploid phasing from long reads


Resolving genomes at haplotype level is crucial for understanding the evolutionary history of polyploid species and for designing advanced breeding strategies. As a highly complex computational problem, polyploid phasing still presents considerable challenges, especially in regions of collapsing haplotypes.

We present WhatsHap polyphase, a novel two-stage approach that addresses these challenges by (i) clustering reads using a position-dependent scoring function and (ii) threading the haplotypes through the clusters by dynamic programming.

We demonstrate on a simulated data set that this results in accurate haplotypes with switch error rates that are around three times lower than those obtainable by the current state-of-the-art and even around seven times lower in regions of collapsing haplotypes. Using a real data set comprising long and short read tetraploid potato sequencing data we show that WhatsHap polyphase is able to phase the majority of the potato genes after error correction, which enables the assembly of local genomic regions of interest at haplotype level. Our algorithm is implemented as part of the widely used open source tool WhatsHap and ready to be included in production settings.

Authors: Sven Schrinner, Rebecca Serra Mari, Jana W. Ebler, Mikko Rautiainen, Lancelot Seillier, Julia Reimer, Bjoern Usadel, Tobias Marschall, Gunnar W. Klau

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag