Main menu

A genomic link in China roses: and they all lived prickly but water deficient ever after?


Prickles act against herbivores, pathogens or mechanical injury, while also prevent water loss. However, whether prickles have new function and the molecular genetics of prickle patterning remains poorly explored. Here, we generated a high-quality reference genome assembly for ‘Basye’s Thornless’ (BT), a prickle-free cultivar of Rosa wichuraiana, to identify genetic elements related to stem prickle development. The BT genome harbors a high level of sequence diversity in itself and between cultivar ‘Old Blush’ (R. chinensis), a founder genotype in rose domestication.

Inheritance of stem prickle density was determined and two QTL were identified. Differentially expressed genes in QTL were involved in water-related functions, suggesting that prickle density may hitchhike with adaptations to moist environments. While the prickle-related gene-regulatory-network (GRN) was highly conserved, the expression variation of key candidate genes was associated with prickle density. Our study provides fundamental resources and insights for genome evolution in the Rosaceae. Ongoing efforts on identification of the molecular bases for key rose traits may lead to the improvement of horticultural markets.

Authors: Mi-Cai Zhong, Xiao-Dong Jiang, Guo-Qian Yang, Wei-Hua Cui, Zhi-Quan Suo, Wei-Jia Wang, Yi-Bo Sun, Dan Wang, Xin-Chao Cheng, Xu-Ming Li, Xue Dong, Kai-Xue Tang, De-Zhu Li, Jin-Yong Hu

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag