Main menu

Exploiting synergistic interactions of Medicago sativa L. and Paraburkholderia tropica for enhanced biodegradation of diesel fuel hydrocarbons


The biotechnological application of microorganisms for rhizoremediation of contaminated sites requires the development of plant-microbe symbionts capable of plant growth promotion and hydrocarbon degradation. Studies focusing on microbial consortia are often difficult to reproduce, thereby necessitating the need for culturable single bacterial species for biotechnological applications.

Through genomic analyses and plant growth experiments, we examined the synergistic interactions of Medicago sativa L. and Paraburkholderia tropica for enhanced remediation of diesel fuel-contaminated soils. Comparative genomics revealed strong potential of P. tropica for plant growth-promotion, chemotaxis and motility, root nodulation and colonization, and diesel fuel degradation.

Plant growth experiments confirmed that P. tropica thrived in the contaminated soils and effectively enhanced M. sativa growth. Geochemical analysis showed that the M. sativa + P. tropica treatment resulted in an efficient degradation of diesel fuel hydrocarbons within two months, offering great prospects for enhanced biodegradation of organic pollutants.

Authors: Michael O. Eze, Volker Thiel, Grant C. Hose, Simon C. George, Rolf Daniel

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag