Main menu

Draft genome sequence of a highly pigmented bacterium Paracoccus marcusii KGP capable of producing galacto-oligosaccharides synthesising enzyme


The genome of Paracoccus marcusii KGP, isolated from the marine sediment collected from the coast of the Bay of Bengal, was sequenced using Oxford Nanopore sequencing technology. The assembled genome sequence consists of seven contigs and has a 4,085,678 bp circular chromosome with 1647 coding genes and a G+C content of 66.7%. Besides, the genome of P. marcusii KGP contains three copies of the rrn operon.

The genes coding for the industrially relevant enzymes and secondary metabolites such as β-galactosidase, protease, amylase, β-glucosidase, ectoine, indigoidine, and carotenoid biosynthesis clusters were also identified in the genome. When the β-galactosidase extracted from P. marcusii KGP was mixed with a high concentration of lactose, galacto-oligosaccharides were produced, which revealed the transgalactosylation property of the enzyme. The genome sequence of P. marcusii KGP was found to have an average nucleotide identity value of 96.16 and a digital DNA–DNA hybridisation value of 73.90% with the genome sequence of P. marcusii CGMCC.

Furthermore, by comparing the genome sequences of both strains, it was found that the size of the KGP genome was large, indicating the possibility of strain-specific genes in addition to core genes.

Authors: Kalathinathan K. Pooja, Sankaranarayanan Gomathinayagam, Kodiveri M. Gothandam

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag