Main menu

De novo clustering of long reads by gene from transcriptomics data


Long-read sequencing currently provides sequences of several thousand base pairs. It is therefore possible to obtain complete transcripts, offering an unprecedented vision of the cellular transcriptome. However the literature lacks tools for de novo clustering of such data, in particular for Oxford Nanopore Technologies reads, because of the inherent high error rate compared to short reads. Our goal is to process reads from whole transcriptome sequencing data accurately and without a reference genome in order to reliably group reads coming from the same gene. This de novo approach is therefore particularly suitable for non-model species, but can also serve as a useful pre-processing step to improve read mapping. Our contribution both proposes a new algorithm adapted to clustering of reads by gene and a practical and free access tool that allows to scale the complete processing of eukaryotic transcriptomes. We sequenced a mouse RNA sample using the MinION device. This dataset is used to compare our solution to other algorithms used in the context of biological clustering. We demonstrate that it is the best approach for transcriptomics long reads. When a reference is available to enable mapping, we show that it stands as an alternative method that predicts complementary clusters.

CARNAC-LR is written in C++, open source and available for Linux systems at github.com/kamimrcht/CARNAC-LR

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

联系我们

Intellectual property Cookie policy Corporate reporting Privacy policy Terms & conditions Accessibility

关于 Oxford Nanopore

Contact us 领导团队 媒体资源和联系方式 投资者 在 Oxford Nanopore 工作 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag