Main menu

A computational toolset for rapid identification of SARS-CoV-2, other viruses, and microorganisms from sequencing data


In this paper, we present a toolset and related resources for rapid identification of viruses and microorganisms from short-read or long-read sequencing data.

We present fastv as an ultra-fast tool to detect microbial sequences present in sequencing data, identify target microorganisms, and visualize coverage of microbial genomes.

This tool is based on the k-mer mapping and extension method. K-mer sets are generated by UniqueKMER, another tool provided in this toolset. UniqueKMER can generate complete sets of unique k-mers for each genome within a large set of viral or microbial genomes. For convenience, unique k-mers for microorganisms and common viruses that afflict humans have been generated and are provided with the tools. As a lightweight tool, fastv accepts FASTQ data as input, and directly outputs the results in both HTML and JSON formats. Prior to the k-mer analysis, fastv automatically performs adapter trimming, quality pruning, base correction, and other pre-processing to ensure the accuracy of k-mer analysis.

Specifically, fastv provides built-in support for rapid SARS-CoV-2 identification and typing. Experimental results showed that fastv achieved 100% sensitivity and 100% specificity for detecting SARS-CoV-2 from sequencing data; and can distinguish SARS-CoV-2 from SARS, MERS, and other coronaviruses.

This toolset is available at: https://github.com/OpenGene/fastv.

Authors: Shifu Chen, Changshou He, Yingqiang Li, Zhicheng Li, Charles E Melancon III

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag