Main menu

Clairvoyante: a multi-task convolutional deep neural network for variant calling in Single Molecule Sequencing

The accurate identification of DNA sequence variants is an important, but challenging task in genomics. It is particularly difficult for single molecule sequencing, which has a per-nucleotide error rate of ~5%-15%. Meeting this demand, we developed Clairvoyante, a multi-task five-layer convolutional neural network model for predicting variant type (SNP or indel), zygosity, alternative allele and indel length from aligned reads. For the well-characterized NA12878 human sample, Clairvoyante achieved 99.73%, 97.68% and 95.36% precision on known variants, and 98.65%, 92.57%, 87.26% F1-score for whole-genome analysis, using Illumina, PacBio, and Oxford Nanopore data, respectively. Training on a second human sample shows Clairvoyante is sample agnostic and finds variants in less than two hours on a standard server. Furthermore, we identified 3,135 variants that are missed using Illumina but supported independently by both PacBio and Oxford Nanopore reads. Clairvoyante is available open-source (https://github.com/aquaskyline/Clairvoyante), with modules to train, utilize and visualize the model.

Authors: Ruibang Luo, Fritz J Sedlazeck, Tak-Wah Lam, Michael Schatz

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

联系我们

知识产权 Cookie 政策 企业报告 隐私政策 条件条款 前瞻性陈述

关于 Oxford Nanopore

联系我们 领导团队 媒体资源和联系方式 投资者 在 Oxford Nanopore 工作 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag