Main menu

Antibiotic tolerance, persistence, and resistance of the evolved minimal cell, *Mycoplasma mycoides* JCVI-Syn3B

Antibiotic persisters are a small subpopulation of bacteria that tolerate antibiotics due to a physiologically dormant state. As a result, this phenomenon (persistence) is considered a major contributor to the evolution of antibiotic-resistant and relapsing infections. However, the precise molecular mechanisms of persistence are still unclear. To examine the key mechanisms of persistence, we used the synthetically developed minimal cell Mycoplasma mycoides JCVI-Syn3B; the genome contains <500 genes, which are mostly essential.

We found that Syn3B evolves expeditiously and rapidly evolves antibiotic resistance to kasugamycin. The minimum cell also tolerates and persists against multiple antibiotics despite lacking many systems related to bacterial persistence (e.g. toxin-antitoxin systems). These results show that this minimal system is a suitable system to unravel the central regulatory mechanisms of persistence.

Authors: Tahmina Hossain, Heather S. Deter, Nicholas C. Butzin

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

联系我们

知识产权 Cookie 政策 企业报告 隐私政策 条件条款 前瞻性陈述

关于 Oxford Nanopore

联系我们 领导团队 媒体资源和联系方式 投资者 在 Oxford Nanopore 工作 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag