Main menu

AERON: Transcript quantification and gene-fusion detection using long reads


Single-molecule sequencing technologies have the potential to improve the measurement and analysis of long RNA molecules expressed in cells. However, the analysis of error-prone long RNA reads is a current challenge.

We present AERON for the estimation of transcript expression and prediction of gene-fusion events.

AERON uses an efficient read-to-graph alignment algorithm to obtain accurate estimates for noisy reads. We demonstrate AERON to yield accurate expression estimates on simulated and real datasets. It is the first method to reliably call gene-fusion events from long RNA reads. Sequencing the K562 transcriptome, we used AERON and found known as well as novel gene-fusion events.

Authors: Mikko Rautiainen, Dilip Durai, Ying Chen, Lixia Xin, Hwee Meng Low, Jonathan Goeke, Tobias Marschall, Marcel Schulz

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag