Main menu

Using MinION to characterize dog skin microbiota through full-length 16S rRNA gene sequencing approach


The most common strategy to assess microbiota is sequencing specific hypervariable regions of 16S rRNA gene using 2nd generation platforms (such as MiSeq or Ion Torrent PGM). Despite obtaining high-quality reads, many sequences fail to be classified at the genus or species levels due to their short length. This pitfall can be overcome sequencing the full-length 16S rRNA gene (1,500bp) by 3rd generation sequencers. We aimed to assess the performance of nanopore sequencing using MinION on characterizing microbiota complex samples. First set-up step was performed using a staggered mock community (HM-783D). Then, we sequenced a pool of several dog skin microbiota samples previously sequenced by Ion Torrent PGM. Sequences obtained for full-length 16S rRNA with degenerated primers retrieved increased richness estimates at high taxonomic level (Bacteria and Archaea) that were missed with short-reads. Besides, we were able to obtain taxonomic assignments down to species level, although it was not always feasible due to: i) incomplete database; ii) primer set chosen; iii) low taxonomic resolution of 16S rRNA gene within some genera; and/or iv) sequencing errors. Nanopore sequencing of the full-length 16S rRNA gene using MinION with 1D sequencing kit allowed us inferring microbiota composition of a complex microbial community to lower taxonomic levels than short-reads from 2nd generation sequencers.

Authors: Anna Cusco, Joaquim Vines, Sara D'Andreano, Francesca Riva, Joaquim Casellas, Armand Sanchez, Olga Francino

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

ナノポア技術

ナノポアの最新ニュースを購読 リソースと発表文献 Nanopore Communityとは

Oxford Nanoporeについて

ニュース 会社沿革 持続可能性 経営陣 メディアリソース & お問い合わせ先 投資家向け パートナー向け Oxford Nanopore社で働く 現在の募集状況 営業上の情報 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag