Main menu

Unsupervised Barcode Demultiplexing


The current approaches to demultiplexing of barcoded reads typically use base called sequences and tend to render up to 20% of the reads unusable due to base calling errors. In contrast, Deepbinner (Wick et al., 2018) works with the raw signal by employing a convolutional neural network and loses only ≈ 5% of reads, while retaining the precision of ≈ 98%. We present a novel approach that also operates in the signal space, but is based on unsupervised learning.

Download the PDF

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

お問い合わせ

Intellectual property Cookie policy Corporate reporting Privacy policy Terms & conditions Accessibility

Oxford Nanoporeについて

Contact us 経営陣 メディアリソース & お問い合わせ先 投資家向け Oxford Nanopore社で働く BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag