Main menu

NCM 2023 Singapore: Novel algorithms for long read analysis and applications


Long-read sequencing based de novo and somatic structural variant (SV) discovery remains challenging, necessitating genomic comparison between samples. Here, SVision-pro visually represents genome-to-genome-level sequencing differences and comparatively discovers SV between genomes by a neural-network-based instance segmentation framework without prerequisite of SV inference models. SVision-pro outperforms state-of-the-art approaches, particularly in resolving complex SV (CSV), with low Mendelian error rates and high sensitivity of low-frequency SVs. Moreover, SVision-pro successfully discoveries 26 high-quality de novo SVs in six family datasets and retrieves eight somatic CSVs in normal-tumor-paired samples.

Authors: Kai Ye

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

お問い合わせ

Intellectual property Cookie policy Corporate reporting Privacy policy Terms & conditions Accessibility

Oxford Nanoporeについて

Contact us 経営陣 メディアリソース & お問い合わせ先 投資家向け Oxford Nanopore社で働く BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag