Main menu

Native molecule sequencing by nano-ID reveals synthesis and stability of RNA isoforms


Eukaryotic genes often generate a variety of RNA isoforms that can lead to functionally distinct protein variants. The synthesis and stability of RNA isoforms is however poorly characterized. The reason for this is that current methods to quantify RNA metabolism use 'short-read' sequencing that cannot detect RNA isoforms. Here we present nanopore sequencing-based Isoform Dynamics (nano-ID), a method that detects newly synthesized RNA isoforms and monitors isoform metabolism. nano-ID combines metabolic RNA labeling, 'long-read' nanopore sequencing of native RNA molecules and machine learning. Application of nano-ID to the heat shock response in human cells reveals that many RNA isoforms change their synthesis rate, stability, and splicing pattern. nano-ID also shows that the metabolism of individual RNA isoforms differs strongly from that estimated for the combined RNA signal at a specific gene locus. And although combined RNA stability correlates with poly(A)-tail length, individual RNA isoforms can deviate significantly. nano-ID enables studies of RNA metabolism on the level of single RNA molecules and isoforms in different cell states and conditions.

Authors: Kerstin C Maier, Saskia Gressel, Patrick Cramer, Bjoern Schwalb

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

ナノポア技術

ナノポアの最新ニュースを購読 リソースと発表文献 Nanopore Communityとは

Oxford Nanoporeについて

ニュース 会社沿革 持続可能性 経営陣 メディアリソース & お問い合わせ先 投資家向け パートナー向け Oxford Nanopore社で働く 現在の募集状況 営業上の情報 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag