Main menu

Metagenomic sequencing of municipal wastewater provides a near-complete SARS-CoV-2 genome sequence identified as the B.1.1.7 variant of concern


Laboratory-based wastewater surveillance for SARS-CoV-2, the causative agent of the ongoing COVID-19 pandemic, can be conducted using RT-qPCR-based screening of municipal wastewater samples. Although it provides rapid viral detection and can inform SARS-CoV-2 abundance in wastewater, this approach lacks the resolution required for viral genotyping and does not support tracking of viral genome evolution. The recent emergence of several variants of concern, a result of mutations across the genome including the accrual of important mutations within the viral spike glycoprotein, has highlighted the need for a method capable of detecting the cohort of mutations associated with these and newly emerging genotypes.

Here we provide an innovative methodology for the recovery of a near-complete SARS-CoV-2 sequence from a wastewater sample collected from across Canadian municipalities including one that experienced a significant outbreak attributable to the SARS-CoV-2 B.1.1.7 variant of concern. Our results demonstrate that a combined interrogation of genome consensus-level sequences and alternative alleles enables the identification of a SARS-CoV-2 variant of concern and the detection of a new allele within a viral accessory gene that may be representative of a recently evolved B.1.1.7 sublineage.

Authors: Chrystal Landgraff, Lu Ya Ruth Wang, Cody Buchanan, Matthew Wells, Justin Schonfeld, Kyrylo Bessonov, Jennifer Ali, Erin Robert, Celine Nadon

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

ナノポア技術

ナノポアの最新ニュースを購読 リソースと発表文献 Nanopore Communityとは

Oxford Nanoporeについて

ニュース 会社沿革 持続可能性 経営陣 メディアリソース & お問い合わせ先 投資家向け パートナー向け Oxford Nanopore社で働く 現在の募集状況 営業上の情報 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag