Main menu

Long-read viral metagenomics enables capture of abundant and microdiverse viral populations and their niche-defining genomic islands


Marine viruses impact global biogeochemical cycles via their influence on host community structure and function, yet our understanding of viral ecology is constrained by limitations in culturing of important hosts and the lack of a universal gene to facilitate community surveys. Short-read viral metagenomic studies have provided clues to viral function and first estimates of global viral gene abundance and distribution. However, short-read assemblies are confounded by populations with high levels of strain evenness and nucleotide diversity (microdiversity), limiting assembly of some of the most abundant viruses on Earth. Assembly across genomic islands which likely contain niche-defining genes that drive ecological speciation is also challenging. While such populations and features are successfully captured by single-virus genomics and fosmid-based approaches, both techniques require considerable cost and technical expertise. Here we established a low-cost, low-input, high throughput alternative method for improving assembly of viral metagenomics using long read technology. Named VirION (Viral, long-read metagenomics via MinION sequencing), our sequencing approach and complementary bioinformatics pipeline (i) increased number and completeness of assembled viral genomes compared to short-read sequencing methods; (ii) captured populations of abundant viruses with high microdiversity missed by short-read methods and (iii) captured more and longer genomic islands than short-read methods. Thus, VirION provides a high throughput and cost-effective alternative to fosmid and single-virus genomic approaches to more comprehensively explore viral communities in nature.

Authors: Joanna Warwick-Dugdale, Natalie Solonenko, Karen Moore, Lauren Chittick, Ann C Gregory, Michael J Allen, Matthew B Sullivan, Ben Temperton

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

ナノポア技術

ナノポアの最新ニュースを購読 リソースと発表文献 Nanopore Communityとは

Oxford Nanoporeについて

ニュース 会社沿革 持続可能性 経営陣 メディアリソース & お問い合わせ先 投資家向け パートナー向け Oxford Nanopore社で働く 現在の募集状況 営業上の情報 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag