Main menu

London Calling 2023: Dynamic, adaptive sampling during nanopore sequencing using Bayesian experimental design


Nanopore sequencers can reject molecules after analysis of a small initial part. Until now, selection has been based on predetermined regions of interest, which inhibits re-focusing on molecules that may contribute most to experimental success. We present a new method to generate dynamically updated targets by quantifying remaining uncertainty by streaming data to decide whether the expected information of a newly observed molecule warrants fully sequencing it. We illustrate this by mitigating coverage bias in a microbial community, improving variant calling. Further, we expand our method for true de novo enrichment, that is, without prior information about sample composition. We achieve this by constructing  and incrementally updating assemblies in real time, which are then used to reject over-represented  sequences, thus mitigating abundance bias without requiring input genomes. Overall, these data-driven updates are applicable to many scenarios, such as enriching regions with increased divergence or low coverage, or unknown species in mixtures.

Authors: Lukas Weilguny

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

ナノポア技術

ナノポアの最新ニュースを購読 リソースと発表文献 Nanopore Communityとは

Oxford Nanoporeについて

ニュース 会社沿革 持続可能性 経営陣 メディアリソース & お問い合わせ先 投資家向け パートナー向け Oxford Nanopore社で働く 現在の募集状況 営業上の情報 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag