Main menu

Linked machine learning classifiers improve species classification of fungi when using error-prone long-reads on extended metabarcodes


The increased usage of long-read sequencing for metabarcoding has not been matched with public databases suited for error-prone long-reads. We address this gap and present a proof-of-concept study for classifying fungal species using linked machine learning classifiers. We demonstrate its capability for accurate classification using labelled and unlabelled fungal sequencing datasets.

We show the advantage of our approach for closely related species over current alignment and k-mer methods and suggest a confidence threshold of 0.85 to maximise accurate target species identification from complex samples of unknown composition. We suggest future use of this approach in medicine, agriculture, and biosecurity.

Authors: Tavish G. Eenjes, Yiheng Hu, Laszlo Irinyi, Minh Thuy Vi Hoang, Leon M. Smith, Celeste C. Linde, Wieland Meyer, Eric A. Stone, John P. Rathjen, Benjamin Mashford, Benjamin Schwessinger

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

ナノポア技術

ナノポアの最新ニュースを購読 リソースと発表文献 Nanopore Communityとは

Oxford Nanoporeについて

ニュース 会社沿革 持続可能性 経営陣 メディアリソース & お問い合わせ先 投資家向け パートナー向け Oxford Nanopore社で働く 現在の募集状況 営業上の情報 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag