Main menu

Identifying virulence determinants of multidrug-resistant *Klebsiella pneumoniae* in *Galleria mellonella*

Infections caused by Klebsiella pneumoniae are a major public health threat. Extensively drug-resistant and even pan-resistant strains have been reported. Understanding K. pneumoniae pathogenesis is hampered by the fact that murine models of infection offer limited resolution for the non-hypervirulent strains which cause the majority of infections.

We have performed genome-scale fitness profiling of a multidrug-resistant K. pneumoniae ST258 strain during infection of the insect Galleria mellonella, with the aim to determine if this model is suitable for large-scale virulence factor discovery in this pathogen. Our results demonstrated a dominant role for surface polysaccharides in infection, with contributions from siderophores, cell envelope proteins, purine biosynthesis genes and additional genes of unknown function.

Comparison with a hypervirulent strain, ATCC 43816, revealed substantial overlap in important infection-related genes, as well as additional putative virulence factors that may be specific to ST258. Our analysis also identified a role for the metalloregulatory protein NfeR (also called YqjI) in virulence.

Overall, this study offers new insight into the infection fitness landscape of K. pneumoniae ST258, and provides a framework for using the highly flexible, scalable G. mellonella infection model to dissect the molecular virulence mechanisms of K. pneumoniae and other bacterial pathogens.

Authors: Sebastian Bruchmann, Theresa Feltwell, Julian Parkhill, Francesca L. Short

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

お問い合わせ

Intellectual property Cookie policy Corporate reporting Privacy policy Terms, conditions and policies Accessibility

Oxford Nanoporeについて

Contact us 経営陣 メディアリソース & お問い合わせ先 投資家向け Oxford Nanopore社で働く BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag