Main menu

High-resolution HLA typing by long reads from the R10.3 Oxford nanopore flow cells


Nanopore sequencing has been investigated as a rapid and cost-efficient option for HLA typing in recent years. Despite the lower raw read accuracy, encouraging typing accuracy has been reported, and long reads from the platform offer additional benefits of the improved phasing of distant variants. The newly released R10.3 flow cells are expected to provide higher read-level accuracy than previous chemistries. We examined the performance of R10.3 flow cells on the MinION device in HLA typing after enrichment of target genes by multiplexed PCR.

We also aimed to mimic a 1-day workflow with 8–24 samples per sequencing run. A diverse collection of 102 unique samples were typed for HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRB3/4/5 loci. The concordance rates at 2-field and 3-field resolutions were 99.5% (1836 alleles) and 99.3% (1710 alleles). We also report important quality metrics from these sequencing runs. Continued research and independent validations are warranted to increase the robustness of nanopore-based HLA typing for broad clinical application.

Authors: Chang Liu, Xiao Yang, Brian F. Duffy, Jessica Hoisington-Lopez, MariaLynn Crosby, Rhonda Porche-Sorbet, Katsuyuki Saito, Rick Berry, Victoria Swamidass, Robi D. Mitra

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

ナノポア技術

ナノポアの最新ニュースを購読 リソースと発表文献 Nanopore Communityとは

Oxford Nanoporeについて

ニュース 会社沿革 持続可能性 経営陣 メディアリソース & お問い合わせ先 投資家向け パートナー向け Oxford Nanopore社で働く 現在の募集状況 営業上の情報 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag