Main menu

Density based clustering and error correction of metabarcodes in Nanopore sequencing


Nanopore sequencing can enable field-based research, but few studies demonstrate its suitability for metabarcoding and analysis of environmental DNA. We show metabarcodes in a bulk sample of 50 different aquatic invertebrate species can be identified with Nanopore Sequencing, and error corrected to accuracy comparable to MiSeq (up to 99.3% match against reference) .

Our python bioinformatics pipeline generates consensus reads from concatemers, performs OTU clustering with OPTICS, and enables exploration of error profiles and species composition. Concatemer generation, error correction, and density based clustering enabled high fidelity identification and reconstruction of species barcodes de novo

Download the PDF

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

ナノポア技術

ナノポアの最新ニュースを購読 リソースと発表文献 Nanopore Communityとは

Oxford Nanoporeについて

ニュース 会社沿革 持続可能性 経営陣 メディアリソース & お問い合わせ先 投資家向け パートナー向け Oxford Nanopore社で働く 現在の募集状況 営業上の情報 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag