Main menu

De novo assembly of the complex genome of Nippostrongylus brasiliensis using MinION long reads


Background
Eukaryotic genome assembly remains a challenge in part due to the prevalence of complex DNA repeats. This is a particularly acute problem for holocentric nematodes because of the large number of satellite DNA sequences found throughout their genomes. These have been recalcitrant to most genome sequencing methods. At the same time, many nematodes are parasites and some represent a serious threat to human health. There is a pressing need for better molecular characterization of animal and plant parasitic nematodes. The advent of long-read DNA sequencing methods offers the promise of resolving complex genomes.

Results
Using Nippostrongylus brasiliensis as a test case, applying improved base-calling algorithms and assembly methods, we demonstrate the feasibility of de novo genome assembly matching current community standards using only MinION long reads. In doing so, we uncovered an unexpected diversity of very long and complex DNA sequences repeated throughout the N. brasiliensis genome, including massive tandem repeats of tRNA genes.

Conclusion
Base-calling and assembly methods have improved sufficiently that de novo genome assembly of large complex genomes is possible using only long reads. The method has the added advantage of preserving haplotypic variants and so has the potential to be used in population analyses.

Authors: David Eccles, Jodie Chandler, Mali Camberis, Bernard Henrissat, Sergey Koren, Graham Le Gros, Jonathan Ewbank

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

ナノポア技術

ナノポアの最新ニュースを購読 リソースと発表文献 Nanopore Communityとは

Oxford Nanoporeについて

ニュース 会社沿革 持続可能性 経営陣 メディアリソース & お問い合わせ先 投資家向け パートナー向け Oxford Nanopore社で働く 現在の募集状況 営業上の情報 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag