Main menu

Comparison of third-generation sequencing approaches to identify viral pathogens under public health emergency conditions


The capability of high-throughput sequencing (HTS) for detection of known and unknown viruses timely makes it a powerful tool for public health emergency response. Third-generation sequencing (TGS) offers advantages in speed and length of detection over second-generation sequencing (SGS). Here, we presented the end-to-end workflows for both Oxford Nanopore MinION and Pacbio Sequel on a viral disease emergency event, along with Ion Torrent PGM as a reference.

A specific pipeline for comparative analysis on viral genomes recovered by each platform was assembled, given the high errors of base-calling for TGS platforms. All the three platforms successfully identified and recovered at least 85% Norovirus GII genomes. Oxford Nanopore MinION spent the least sample-to-answer turnaround time with relatively low but enough accuracy for taxonomy classification. Pacbio Sequel recovered the most accurate viral genome, while spending the longest time.

Overall, Nanopore metagenomics can rapidly characterize viruses, and Pacbio Sequel can accurately recover viruses. This study provides a framework for designing the appropriate experiments that are likely to lead to accurate and rapid virus emergency response.

Authors: Yang Li, Xiao-zhou He, Ming-hui Li, Bo Li, Meng-jie Yang, Yao Xie, Yi Zhang, Xue-jun Ma

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

ナノポア技術

ナノポアの最新ニュースを購読 リソースと発表文献 Nanopore Communityとは

Oxford Nanoporeについて

ニュース 会社沿革 持続可能性 経営陣 メディアリソース & お問い合わせ先 投資家向け パートナー向け Oxford Nanopore社で働く 現在の募集状況 営業上の情報 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag