Main menu

Allelic diversity of the PRDM9 coding minisatellite in minke whales


The PRDM9 protein controls the reshuffling of parental genomes in most metazoans. During meiosis the PRDM9 protein recognizes and binds specific target motifs via its zinc-finger array, which is encoded by a hypervariable minisatellite. To date, PRDM9 diversity has been little studied outside humans, wild mice and some domesticated species where evolutionary constraints may have been relaxed.

Here we explore the structure and variability of PRDM9 in samples of the minke whales from the Atlantic, Pacific and Southern Oceans. We show that minke whales possess all the features characteristic of organisms with PRDM9-directed recombination initiation, including complete KRAB, SSXRD and SET domains and a rapidly evolving array of C2H2-type-Zincfingers (ZnF). We uncovered eighteen novel PRDM9 variants and evidence of rapid evolution, particularly of DNA-recognizing positions that evolve under positive selection.

At different geographical scales, we observed extensive PRDM9 diversity in Antarctic minke whales (Balaenoptera bonarensis), that conversely lack observable population differentiation in mitochondrial DNA and microsatellites. In contrast, a single PRDM9 variant is shared between all Common Minke whales and even across subspecies boundaries of North Atlantic (B. a. acutorostrata) and North Pacific (B. a. scammoni) minke whale, which do show clear population differentiation.

PRDM9 variation of whales predicts distinct recombination initiation landscapes genome wide, which has possible consequences for speciation.

Authors: Elena Damm, Kristian K Ullrich, William B Amos, Linda Odenthal-Hesse

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

ナノポア技術

ナノポアの最新ニュースを購読 リソースと発表文献 Nanopore Communityとは

Oxford Nanoporeについて

ニュース 会社沿革 持続可能性 経営陣 メディアリソース & お問い合わせ先 投資家向け パートナー向け Oxford Nanopore社で働く 現在の募集状況 営業上の情報 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag