Accurate detection of circulating tumor DNA using nanopore consensus sequencing
- Home
- Accurate detection of circulating tumor DNA using nanopore consensus sequencing
Levels of circulating tumor DNA (ctDNA) in liquid biopsies may serve as a sensitive biomarker for real-time, minimally-invasive tumor diagnostics and monitoring. However, detecting ctDNA is challenging, as much fewer than 5% of the cell-free DNA in the blood typically originates from the tumor. To detect lowly abundant ctDNA molecules based on somatic variants, extremely sensitive sequencing methods are required.
Here, we describe a new technique, CyclomicsSeq, which is based on Oxford Nanopore sequencing of concatenated copies of a single DNA molecule.
Consensus calling of the DNA copies increased the base-calling accuracy ~60x, enabling accurate detection of TP53 mutations at frequencies down to 0.02%. We demonstrate that TP53-specific CyclomicsSeq assay can be successfully used to monitor tumor burden during treatment for head-and-neck cancer patients. CyclomicsSeq can be applied to any genomic locus and offers an accurate diagnostic liquid biopsy approach that can be implemented in point-of-care clinical workflows.