Main menu

Whole human genome 5'-mC methylation analysis using long read nanopore sequencing


DNA methylation is a type of epigenetic modification that affects gene expression regulation and is associated with several human diseases. Microarray and short read sequencing technologies are often used to study 5’-methylcytosine (5’-mC) modification of CpG dinucleotides in the human genome. Although both technologies produce trustable results, the evaluation of the methylation status of CpG sites suffers from the potential side effects of DNA modification by bisulfite and the ambiguity of mapping short reads in repetitive and highly homologous genomic regions, respectively.

Nanopore sequencing is an attractive alternative for the study of 5’-mC since the long reads produced by this technology allow to resolve those genomic regions more easily. Moreover, it allows direct sequencing of native DNA molecules using a fast library preparation procedure. In this work we show that 10X coverage depth nanopore sequencing, using DNA from a human cell line, produces 5’-mC methylation frequencies consistent with those obtained by methylation microarray and digital restriction enzyme analysis of methylation. In particular, the correlation of methylation values ranged from 0.73 to 0.90 using an average genome sequencing coverage depth <2X or a minimum read support of 17X for each CpG site, respectively.

We also showed that a minimum of 5 reads per CpG yields strong correlations (>0.89) between sequencing runs and an almost uniform variation in methylation frequencies of CpGs across the entire value range. Furthermore, nanopore sequencing was able to correctly display methylation frequency patterns according to genomic annotations, including a majority of unmethylated and methylated sites in the CpG islands and inter-CpG island regions, respectively. These results demonstrate that low coverage depth nanopore sequencing is a fast, reliable and unbiased approach to the study of 5’-mC in the human genome.

Authors: Catarina Silva, Miguel Machado, José Ferrão, Sebastião Rodrigues, View ORCID ProfileLuís Vieira

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag