Main menu

Whole-genome sequencing of rare disease patients in a national healthcare system


Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and mediating genes for more than half such disorders remain to be discovered.

We implemented whole-genome sequencing (WGS) in a national healthcare system to streamline diagnosis and to discover unknown aetiological variants, in the coding and non-coding regions of the genome.

In a pilot study for the 100,000 Genomes Project, we generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 patients with detailed phenotypic data. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed aetiological. Using WGS of UK Biobank, we showed that rare alleles can explain the presence of some individuals in the tails of a quantitative red blood cell (RBC) trait. Finally, we reported 4 novel non-coding variants which cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL.

Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.

Authors: Willem H Ouwehand, on behalf of the NIHR BioResource and the 100,000 Genomes Project

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag