Main menu

VIRUSBreakend: viral integration recognition using single breakends


Integration of viruses into infected host cell DNA can causes DNA damage and can disrupt genes. Recent cost reductions and growth of whole genome sequencing has produced a wealth of data in which viral presence and integration detection is possible. While key research and clinically relevant insights can be uncovered, existing software has not achieved widespread adoption, limited in part due to high computational costs, the inability to detect a wide range of viruses, as well as precision and sensitivity.

Here, we describe VIRUSBreakend, a high-speed tool that identifies viral DNA presence and genomic integration recognition tool using single breakend variant calling. Single breakends are breakpoints in which only one side has been unambiguously placed. We show that by using a novel virus-centric single breakend variant calling and assembly approach, viral integrations can be identified with high sensitivity and a near-zero false discovery rate, even when integrated in regions of the host genome with low mappability, such as centromeres and telomeres that cannot be reliably called by existing tools.

Applying VIRUSBreakend to a large metastatic cancer cohort, we demonstrate that it can reliably detect clinically relevant viral presence and integration including HPV, HBV, MCPyV, EBV, and HHV-8.

Authors: Daniel L. Cameron, Anthony T. Papenfuss

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag