Main menu

Using ribosomal operons for species identification


Professor Lee Kerkhof from Rutgers University employed nanopore sequencing for bacterial microbiome profiling using whole rRNA operon sequences instead of only 16S1,2. The forward primer was generated in the 16S rRNA gene sequence and the reverse primer was within the 23S rRNA gene, resulting in a 4.2 kb fragment.

Fig2.PNG

Figure: Amplicon structure for ribosomal operon sequencing (4.2 kb), containing almost full length 16S and 23S sequences. Image adapted from Kerkhof1.

The team sequenced 6 environmental samples, each comprised of farm soil DNA and bioreactor DNA mixed in varying proportions. Twelve hours of sequencing generated over 1000 operational taxonomic units (OTUs)*, with good concordance between replicates. The team was able to build consensus operons where each rRNA operon contained a 16S and a 23S gene.

The study concluded that nanopore sequencing of operons allowed better taxonomic resolution than standard 16S sequencing using short-read technology. The team also reported that their approach yielded accurate quantification of OTUs.

In summary, Professor Kerkhof commented that:

‘Our analysis demonstrated that the MinION has the ability to provide rRNA operon sequence data of sufficient quality for characterising the microbiota of complex environmental samples and provided results that are reproducible, quantitative, and consistent’3.

The team are now extending their research to elucidate the impact of external factors (e.g. toxin exposure) on the composition of the mouse microbiome1.

*Organisms are clustered into a single OTU based on similarity of DNA sequences above a pre-determined threshold.

1. Kerkhof, L.J. Bacterial microbiome profiling by MinION sequencing of ribosomal operons. (2017). Available at: https://vimeo.com/250287102 [Accessed: 24 January 2018]

2. Jenjaroenpun, P et al. Complete genomic and transcriptional landscape analysis using third-generation sequencing: a case study of Saccharomyces cerevisiae CEN.PK113-7D Nucleic Acids Res (2018). doi: 10.1093/nar/gky014. [Epub ahead of print]

3. Kerkhof, L.J. et al. Profiling bacterial communities by MinION sequencing of ribosomal operons. Microbiome 5:16 (2017). https://doi.org/10.1186/s40168-017-0336-9

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag