Main menu

Towards inferring nanopore sequencing ionic currents from nucleotide chemical structures


The characteristic ionic currents of nucleotide kmers are commonly used in analyzing nanopore sequencing readouts.

We present a graph convolutional network-based deep learning framework for predicting kmer characteristic ionic currents from corresponding chemical structures.

We show such a framework can generalize the chemical information of the 5-methyl group from thymine to cytosine by correctly predicting 5-methylcytosine-containing DNA 6mers, thus shedding light on the de novo detection of nucleotide modifications.

Authors: Hongxu Ding, Ioannis Anastopoulos, Andrew D. Bailey IV, Joshua Stuart, Benedict Paten

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag