Temporal, environmental, and biological drivers of the mucosal microbiome in a wild marine fish, Scomber japonicus


Changing ocean conditions driven by anthropogenic activity may have a negative impact on fisheries by increasing stress and disease with the mucosal microbiome as a potentially important intermediate role. To understand how environment and host biology drives mucosal microbiomes in a marine fish, we surveyed five body sites (gill, skin, digesta, GI, and pyloric caeca) from 229 Pacific chub mackerel, Scomber japonicus, collected across 38 time points spanning one year from the Scripps Institution of Oceanography Pier, making this the largest and longest wild marine fish microbiome survey. Mucosal sites had unique communities significantly different from the surrounding sea water and sediment communities with over 10 times more diversity than sea water alone. Although, external surfaces such as skin and gill were more similar to sea water, digesta was similar to sediment. Both alpha and beta diversity of the skin and gill was explained by environmental and biological factors, especially sea surface temperature, chlorophyll a, and fish age, consistent with an exposure gradient relationship. We verified that seasonal microbial changes were not confounded by migrations of chub mackerel sub-populations by nanopore sequencing a 14,769 bp region of the 16,568 bp mitochondria. A cosmopolitan pathogen, Photobacterium damselae, was prevalent across multiple body sites all year, but highest in the skin, GI, and digesta between June and September. Our study evaluates the extent which the environment and host biology drives mucosal microbial ecology, establishing a baseline for long term monitoring surveys for linking environment stressors to mucosal health of wild marine fish.

Authors: Jeremiah Minich, Semar Petrus, Julius D Michael, Todd P Michael, Rob Knight, Eric Allen