Main menu

A spontaneous complex structural variant in rcan-1 increases exploratory behavior and laboratory fitness of Caenorhabditis elegans


Over long evolutionary timescales, major changes to the copy number, function, and genomic organization of genes occur, however, our understanding of the individual mutational events responsible for these changes is lacking. In this report, we study the genetic basis of adaptation of two strains of C. elegans to laboratory food sources using competition experiments on a panel of 89 recombinant inbred lines (RIL). Unexpectedly, we identified a single RIL with higher relative fitness than either of the parental strains.

This strain also displayed a novel behavioral phenotype, resulting in higher propensity to explore bacterial lawns. Using bulk-segregant analysis and short-read resequencing of this RIL, we mapped the change in exploration behavior to a spontaneous, complex rearrangement of the rcan-1 gene that occurred during construction of the RIL panel. We resolved this rearrangement into five unique tandem inversion/duplications using Oxford Nanopore long-read sequencing. rcan-1 encodes an ortholog to human RCAN1/DSCR1 calcipressin gene, which has been implicated as a causal gene for Down syndrome.

The genomic rearrangement in rcan-1 creates two complete and two truncated versions of the rcan-1 coding region, with a variety of modified 5’ and 3’ non-coding regions. While most copy-number variations (CNVs) are thought to act by increasing expression of duplicated genes, these changes to rcan-1 ultimately result in the reduction of its whole-body expression due to changes in the upstream regions. By backcrossing this rearrangement into a common genetic background to create a near isogenic line (NIL), we demonstrate that both the competitive advantage and exploration behavioral changes are linked to this complex genetic variant.

This NIL strain does not phenocopy a strain containing an rcan-1 loss-of-function allele, which suggests that the residual expression of rcan-1 is necessary for its fitness effects. Our results demonstrate how colonization of new environments, such as those encountered in the laboratory, can create evolutionary pressure to modify gene function. This evolutionary mismatch can be resolved by an unexpectedly complex genetic change that simultaneously duplicates and diversifies a gene into two uniquely regulated genes.

Our work shows how complex rearrangements can act to modify gene expression in ways besides increased gene dosage.

Authors: Yuehui Zhao, Lijiang Long, Jason Wan, Shweta Biliya, Shannon C. Brady, Daehan Lee, Akinade Ojemakinde, Erik C. Andersen, Fredrik O. Vannberg, Hang Lu, Patrick T. McGrath

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag