Main menu

Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing


Probing epigenetic features on DNA has tremendous potential to advance our understanding of the phased epigenome.

In this study, we use nanopore sequencing to evaluate CpG methylation and chromatin accessibility simultaneously on long strands of DNA by applying GpC methyltransferase to exogenously label open chromatin.

We performed nanopore sequencing of nucleosome occupancy and methylome (nanoNOMe) on four human cell lines (GM12878, MCF-10A, MCF-7 and MDA-MB-231). The single-molecule resolution allows footprinting of protein and nucleosome binding, and determination of the combinatorial promoter epigenetic signature on individual molecules.

Long-read sequencing makes it possible to robustly assign reads to haplotypes, allowing us to generate a fully phased human epigenome, consisting of chromosome-level allele-specific profiles of CpG methylation and chromatin accessibility.

We further apply this to a breast cancer model to evaluate differential methylation and accessibility between cancerous and noncancerous cells.

Authors: Isac Lee, Roham Razaghi, Timothy Gilpatrick, Michael Molnar, Ariel Gershman, Norah Sadowski, Fritz J. Sedlazeck, Kasper D. Hansen, Jared T. Simpson, Winston Timp

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

联系我们

Intellectual property Cookie policy Corporate reporting Privacy policy Terms & conditions Accessibility

关于 Oxford Nanopore

Contact us 领导团队 媒体资源和联系方式 投资者 在 Oxford Nanopore 工作 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag