Main menu

SEQU-INTO: Early detection of impurities, contamination and off-targets (ICOs) in long read/MinION sequencing


The MinION sequencer by Oxford Nanopore Technologies turns DNA and RNA sequencing into a routine task in biology laboratories or in field research. For downstream analysis it is required to have a sufficient amount of target reads. Especially prokaryotic or bacteriophagic sequencing samples can contain a significant amount of off-target sequences in the processed sample, stemming from human DNA/RNA contamination, insufficient rRNA depletion, or remaining DNA/RNA from other organisms (e.g. host organism from bacteriophage cultivation).

Such impurity, contamination and off-targets (ICOs) block read capacity, requiring to sequence deeper. In comparison to second-generation sequencing, MinION sequencing allows to reuse its chip after a (partial) run. This allows further usage of the same chip with more sample, even after adjusting the library preparation to reduce ICOs. The earlier a sample’s ICOs are detected, the better the sequencing chip can be conserved for future use.

Here we present sequ-into, a low-resource and user-friendly cross-platform tool to detect ICO sequences from a predefined ICO database in samples early during a MinION sequencing run. The data provided by sequ-into empowers the user to quickly take action to preserve sample material and chip capacity. sequ-into is available from https://github.com/mjoppich/sequ-into

Authors: Markus Joppich, Margaryta Olenchuk, Julia M. Mayer, Quirin Emslander, Luisa F. Jimenez-Soto, Ralf Zimmer

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag