Main menu

Scaffolding and Completing Genome Assemblies in Real-time with Nanopore Sequencing


Genome assemblies obtained from short read sequencing technologies are often fragmented into many contigs because of the abundance of repetitive sequences. Long read sequencing technologies allow the generation of reads spanning most repeat sequences, providing the opportunity to complete these genome assemblies. However, substantial amounts of sequence data and computational resources are required to overcome the high per-base error rate inherent to these technologies. Furthermore, most existing methods only assemble the genomes after sequencing has completed which could result in either generation of more sequence data at greater cost than required or a low-quality assembly if insufficient data are generated. Here we present the first computational method which utilises real-time nanopore sequencing to scaffold and complete short-read assemblies while the long read sequence data is being generated. The method reports the progress of completing the assembly in real-time so users can terminate the sequencing once an assembly of sufficient quality and completeness is obtained. We use our method to complete four bacterial genomes and one eukaryotic genome, and show that it is able to construct more complete and more accurate assemblies, and at the same time, requires less sequencing data and computational resources than existing pipelines. We also demonstrate that the method can facilitate real-time analyses of positional information such as identification of bacterial genes encoded in plasmids and pathogenicity islands.

Further Reading:

Phys.org - 'New method helps researchers piece together puzzle of antibiotic resistance'

Authors: Minh Duc Cao, Son Hoang Nguyen, Devika Ganesamoorthy, Alysha Elliott, Matthew Cooper, Lachlan J M Coin

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag