Main menu

Rbfox2 is critical for maintaining alternative polyadenylation and mitochondrial health in myoblasts


The RNA binding protein RBFOX2 is linked to heart and skeletal muscle diseases; yet, RBFOX2-regulated RNA networks have not been systematically identified. Although RBFOX2 has a well-known function in alternative splicing (AS), it is unclear whether RBFOX2 has other roles in RNA metabolism that affect gene expression and function.

Utilizing state of the art techniques Poly(A)-ClickSeq (PAC-seq) and nanopore cDNA sequencing, we revealed a new role for RBFOX2 in fine tuning alternative polyadenylation (APA) of pre-mRNAs in myoblasts. We found that depletion of RBFOX2 altered expression of mitochondrial genes. We identified the mitochondrial gene Slc25a4 gene that transports ATP/ADP across inner mitochondrial membrane as a target of RBFOX2.

Dissecting how RBFOX2 affects Slc25a4 APA uncovered that RBFOX2 binding motifs near the distal polyadenylation site (PAS) are critical for expression of Slc25a4. Consistent with changes in expression of mitochondrial genes, loss of RBFOX2 altered mitochondrial membrane potential and induced mitochondrial swelling. Our results unveiled a novel role for RBFOX2 in maintaining APA decisions and expression of mitochondrial genes in myoblasts relevant to heart diseases.

Authors: Jun Cao, Elizabeth Jaworski, Kempaiah Rayavara, KarryAnne Belanger, Amanda Sooter, Sierra Miller, Sunil Verma, Ping Ji, Nathan Elrod, Eric J. Wagner, Vsevolod Popov, Nisha J. Garg, Andrew L. Routh, Muge N. Kuyumcu-Martinez

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag