Main menu

Rapid detection of chromosomal translocation and precise breakpoint characterization in acute myeloid leukemia by nanopore long-read sequencing


Detection of chromosomal translocation is a key component in diagnosis and management of acute myeloid leukemia (AML). Targeted RNA next-generation sequencing (NGS) is emerging as a powerful and clinically practical tool, but it depends on expression of RNA transcript from the underlying DNA translocation. Here, we show the clinical utility of nanopore long-read sequencing in rapidly detecting DNA translocation with exact breakpoints. In a newly diagnosed patient with AML, conventional karyotyping showed translocation t(10;12)(q22;p13) but RNA NGS detected NUP98-NSD1 fusion transcripts from a known cryptic translocation t(5;11)(q35;p15). Rapid PCR-free nanopore whole-genome sequencing yielded a 26,194 bp sequencing read and revealed the t(10;12) breakpoint to be DUSP13 and GRIN2B in head-to-head configuration. This translocation was then classified as a passenger structural variant. The sequencing also yielded a 20,709 bp sequencing read and revealed the t(5;11) breakpoint of the driver NUP98-NSD1 fusion. The identified DNA breakpoints also served as markers for molecular monitoring, in addition to fusion transcript expression by digital PCR and sequence mutations by NGS. We illustrate that third-generation nanopore sequencing is a simple and low-cost workflow for DNA translocation detection.

Authors: Chun Hang Au, Dona N. Ho, Beca B. K. Ip, Thomas S. K. Wan, Margaret H. L. Ng, Edmond K. W. Chiu, Tsun Leung Chan, Edmond S. K. Ma

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag