Main menu

A plant-like mechanism coupling m6A reading to polyadenylation safeguards transcriptome integrity and developmental genes partitioning in Toxoplasma


Correct 3’end processing of mRNAs is regarded as one of the regulatory cornerstones of gene expression. In a parasite that must answer to the high regulatory requirements of its multi-host life style, there is a great need to adopt additional means to partition the distinct transcriptional signatures of the closely and tandemly-arranged stage specific genes. In this study, we report on our findings in T. gondii of an m6A-dependent 3’end polyadenylation serving as a transcriptional barrier at these loci.

We identify the core polyadenylation complex within T. gondii and establish CPSF4 as a reader for m6A-modified mRNAs, via a YTH domain within its C-terminus, a feature which is shared with plants. We bring evidence of the specificity of this interaction both biochemically, and by determining the crystal structure at high resolution of the T. gondii CPSF4-YTH in complex with an m6A modified RNA. We show that the loss of m6A, both at the level of its deposition or its recognition was associated with an increase in aberrantly elongated chimeric mRNAs emanating from impaired transcriptional termination, a phenotype previously noticed in the plant model Arabidopsis thaliana.

We bring Nanopore direct RNA sequencing-based evidence of the occurrence of transcriptional read-through breaching into downstream repressed stage-specific genes, in the absence of either CPSF4 or the m6A RNA methylase components in both T. gondii and A. thaliana. Taken together, our results shed light on an essential regulatory mechanism coupling the pathways of m6A metabolism directly to the cleavage and polyadenylation processes, one that interestingly seem to serve, in both T. gondii and A. thaliana, as a guardian against aberrant transcriptional read-throughs.

Authors: Dayana C. Farhat, Matthew Bowler, Guillaume Communie, Dominique Pontier, Lucid Belmudes, Caroline Mas, Charlotte Corrao, Yohann Couté, Alexandre Bougdour, Thierry Lagrange, Mohamed-Ali Hakimi, Christopher Swale

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag