Main menu

P-elements strengthen reproductive isolation within the Drosophila simulans species complex


Determining mechanisms that underlie reproductive isolation is key to understanding how species boundaries are maintained in nature. Transposable elements (TEs) are ubiquitous across eukaryotic genomes. However, the role of TEs in modulating the strength of reproductive isolation between species is poorly understood. Several species of Drosophila have been found to harbor P-elements (PEs), yet only D. simulans is known to be polymorphic for their presence in wild populations. PEs can cause reproductive isolation between PE-containing (P) and PE-lacking (M) lineages of the same species.

However, it is unclear whether they also contribute to the magnitude of reproductive isolation between species. Here, we use the simulans species complex to assess whether differences in PE status between D. simulans and its sister species, which do not harbor PEs, contribute to multiple barriers to gene flow between species. We show that crosses involving a P D. simulans father and an M mother from a sister species exhibit lower F1 female fecundity than crosses involving an M D. simulans father and an M sister-species mother.

Our results suggest that the presence of PEs in a species can strengthen isolation from its sister species, providing evidence that transposable elements can play a role in reproductive isolation and facilitate the process of speciation.

Authors: Antonio Serrato-Capuchina, Emmanuel R. R. D’Agostino, David Peede, Baylee Roy, Kristin Isbell, Jeremy Wang, Daniel R. Matute

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag